首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1552篇
  免费   548篇
  国内免费   164篇
测绘学   16篇
大气科学   18篇
地球物理   1205篇
地质学   878篇
海洋学   67篇
天文学   1篇
综合类   41篇
自然地理   38篇
  2023年   10篇
  2022年   32篇
  2021年   39篇
  2020年   46篇
  2019年   78篇
  2018年   87篇
  2017年   79篇
  2016年   109篇
  2015年   82篇
  2014年   118篇
  2013年   137篇
  2012年   72篇
  2011年   105篇
  2010年   50篇
  2009年   118篇
  2008年   108篇
  2007年   100篇
  2006年   88篇
  2005年   68篇
  2004年   72篇
  2003年   68篇
  2002年   54篇
  2001年   61篇
  2000年   50篇
  1999年   49篇
  1998年   47篇
  1997年   35篇
  1996年   47篇
  1995年   49篇
  1994年   45篇
  1993年   36篇
  1992年   23篇
  1991年   20篇
  1990年   12篇
  1989年   7篇
  1988年   16篇
  1987年   7篇
  1986年   7篇
  1984年   10篇
  1983年   2篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有2264条查询结果,搜索用时 15 毫秒
21.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.  相似文献   
22.
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1–5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.  相似文献   
23.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   
24.
This study's objective was to investigate the Guguan-Xiangong Fault, which lies in the southern Liupanshan area, through satellite image interpretation and field observations. Guguan-Xiangong Fault is divided into five subsegments; among these, the Badu-Longwei segment has been the most recently active. The geomorphic features of the Badu-Longwei segment are clearly displayed, including multiple high fault scarps with fresh bedrock free faces. There is significant evidence for Holocene activity of the three fault sections, located in Renhuashu, Tianjiagou, and Xinjiecun respectively. The three sections feature distinct episodic deposition and fault scratches. Based on 14 Cdating and field observations on the three fault sections, two or more paleoearthquakes across the Badu-Longwei fault segment are ascertained, between 5874±116 and 5430±140 a BP, and after 2037±83 a BP respectively. The Badu-Longwei segment of the Guguan-Xiangong Fault is preliminarily extrapolated as the seismogenic structure of the 600 A.D. Qin-Long earthquake.  相似文献   
25.
SKUA基岩三维地质建模   总被引:1,自引:0,他引:1  
以天津平原地区某个工区为例,介绍了三维地质模型建模的数据准备,SKUA建模的流程以及模型分析,共使用28条断层,6个地层的地质构造图,3条地质剖面构建了地质结构模型,表明SKUA建模是高效的和实用的。  相似文献   
26.
This study investigates the evolution of supra-salt faults in the Eastern Hammerfest Basin using high–quality seismic reflection data. Traditional techniques of displacement analysis, including the variation of fault displacement (throw) against distance (x), depth (z), expansion and growth indices were adopted. Fault reactivation was assessed using bivariate plots of a) cumulative throw vs. age and b) throw (t) vs. depth of nine (9) representative faults.The interpreted faults are supra-salt crestal and synclinal faults striking NE, E and SE. These faults have complicated t-x and t-z plots and are characterized by considerable stratigraphic thickening in their downthrown section. Faults in the study area have developed over the salt structure since latest Paleozoic times; some of them were reactivated by Early to Middle Triassic through dip linkage of initially isolated fault sets. Along strike, the fault exhibit complex segmentation through coalescence of several subunits linked by local throw/displacement minima. Expansion and growth indices show that the faults of the study area developed during the deposition of Paleozoic to Early Cretaceous sediments by polycyclic growth involving both blind and syn-sedimentary activity.An important piece of information from this study is that fault propagation is controlled by lithological heterogeneity and that both lateral and vertical segmentation of faults are important for hydrocarbon migration within the Triassic to Late Cretaceous interval.  相似文献   
27.
陆内块体旋转是周边构造环境和深部构造活动相互作用的结果.前人研究表明华北东部和俄罗斯远东地区晚中生代以来的块体旋转样式,很可能以牡丹江断裂为界发生了显著变化.进一步对牡丹江断裂两侧块体晚中生代以来的块体旋转样式的限定,有助于正确理解这一差异旋转的机制.对采自黑龙江省东部白垩纪和古近纪岩石的(51个采点)古地磁学研究表明...  相似文献   
28.
西秦岭北缘断裂破裂分段与地震危险性评估   总被引:19,自引:4,他引:15       下载免费PDF全文
根据最新地质考察和历史地震考证结果,西秦岭北缘断裂带从东到西可划分为宝鸡、天水、武山、漳县、黄香沟和锅麻滩共6个次级断裂段。上述断裂既具有单段破裂,又具有多段组合破裂的特征。利用时间相依的地震潜势概率评估方法,对这6个单段分别进行地震危险性概率评估,其中黄香沟段和漳县段发生单段破裂的可能性最大,天水段发生单段破裂的概率次之。若发生组合破裂,黄香沟段和漳县段组合破裂可能性大。同时,根据沿断裂带的b值扫描图像分析结果显示,黄香沟段和天水附近应力积累较高,这两个地区应是未来发生强震的主要段落,值得关注。  相似文献   
29.
The right-lateral strike-slip El Pilar Fault is one of the major structures that accommodate the relative displacement between the Caribbean and South-America Plates. This fault, which trends East–West along the northeastern Venezuela margin, is a seismogenic source, and shows numerous evidence for active tectonics, including deformation of the Quaternary sediments filling the Cariaco Gulf. Because the main El Pilar Fault strand belongs to a set of strike-slip faults and thrusts between the stable Guyana shield (South) and the Caribbean oceanic floor (North), a GPS network was designed and installed to measure the relative motion of the El Pilar Fault and other faults. The results obtained from the comparison of 2003 and 2005 surveys indicate: (i) a lack of significant displacement (especially shortening) in the Serrania del Interior (Neogene cordillera overthrusted above the Guyana craton), (ii) an eastward displacement (relative to fixed south America plate) up to 22 mm/year of benchmarks located north of the El Pilar Fault.  相似文献   
30.
Instability structures, synsedimentary faults and turbidites have been studied in the Lower Pliensbachian succession of Saint-Michel-en-Beaumont, belonging to the Taillefer block, an ancient half-graben emplaced during the Liassic Tethyan rifting. Geometrical and mechanical analyses demonstrate that the instability structures occurred thanks to movements along spineless synsedimentary normal faults, when the turbiditic and limestone layers were already case-hardened and partly fractured by tension gashes even when the mudstones were still unlithified. Both the tension gashes and the synsedimentary faults are homogeneous in strike with the major regional faults and are in good agreement with the regional direction of extension for this period. The characters of the turbiditic beds, with erosive base, graded bedding, and incomplete Bouma sequence, are in favour of a seismic origin. Instability structures, spineless synsedimentary faults and turbiditic inflows are thus considered as seismites and interpreted as the result of high seismicity periods including some events with M > 5 in the general extensive ambiance of the Liassic Tethyan rifting. The analysis of the geometrical relationships between all these sedimentary features allows to distinguish the successive stage of occurrence of an instability structure, from the sedimentation of alternating marls and limestones, and sudden turbiditic inflows, then early case-hardening of the turbidites, until the important seismotectonic event generating the spineless normal faults, themselves triggering the fall of indurated blocks and locally the forming of breccias. The Ornon Fault, which constitutes the border of the Taillefer block, 15 km eastward, played a major role during the Liassic sedimentation and may represent the major seismic fault related to the seismites occurrence in the Beaumont basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号